Ultra-thin Proton Conducting Membranes for H₂ Stream Purification with Protective Getter Coatings

Working Group Meeting Presentation

11/07/07
Margaret Welk
Sandia National Laboratories
Team: Robert Grubbs, Andrea Ambrosini

Overview

- Project Objective
 - Synthesize a proton conducting ceramic (e.g. perovskite) membrane using atomic layer deposition (ALD) techniques
 - Membrane will be thin 10 to 100 nm
 - Membrane support will be coated with a sulfur getter to deal with contaminants
 - Sulfur getter (e.g. ZnO) will be deposited on the mesoporous alumina support via ALD to conformally coat all surfaces

Work to Date

Preparatory Work

- Designed permeation unit
- Identified promising ceramic systems SrTiO₂ and SrCeO₃
- Installed oxygen plasma unit for plasma assisted ALD

Experimental Work

- Deposited ZnO conformally on alumina support
- Confirmed phase of deposited material, measured retained porosity of ZnO coated support
- Studied the results of the conversion of ZnO to ZnSO₄ after exposure to SO₂

Innovation

- Couple thin proton conducting membrane with protective "getter" support
 - Provide contaminant resistant membrane module
- Use ALD and plasma assisted ALD to obtain desired film and coating characteristics
 - Excellent control with ALD technique
 - Ultra-thin membrane
 - Increase flux
 - Reduce temperature requirements
 - Reduce cost
 - Support conformally coated with getter

Key Performance Metrics

Estimates:

- Cost per square foot of membrane: Estimated \$1000 a
- Module cost: Estimated \$2000 a
- **Flux rate:** Current bulk ceramic proton conductors = 25 scfh/ft² (not thin membranes) b, c, d
- % H₂ recovery: estimated 50% b, c, d
- **Hydrogen quality:** Conduction mechanism produces pure, >99.9% H₂. Experiments will bear this out. ^{b, c, d}
- Operating temperature: Anticipate 650 to 900°C b, d
- Operating pressure: Anticipate up to 400 psi. b, c, d
- **Durability:** Unknown. Module has the potential for long service life. Dependant on interaction of getter with proton conducting membrane.

References:

- Based on unoptimized precursors and deposition parameters.
- Matsumoto, H.; Hamajima, S.; Iwahara, H. Solid State Ionics 145 (2001) 25.
- Shimura, T.; Tokiwa, Y.; Iwahara, H. Solid State Ionics 154 (2002) 653.
- Kokkofitis, C.; Ouzounidou, M.; Skodra, A.; Stoukides, M. Solid State Ionics 178 (2007) 507.

Summarize Unique H2A Inputs

- Ideally will replace part or all of the PSA systems (follow the WGS in a system installation)
- Membrane module will use natural gas feedstocks, and potentially reformed bio-derived feedstocks
- Other energy usage: use co-generated heat and supplement
- Total yearly operating costs: Unknown at this time

System Definition

- Will define our system as only the Membrane Module
 - Includes support, membrane and integration structure
 Back of the envelop calculations for bulk membranes:
 - Capacity: estimated per module 0.15 kg H₂/day
 - Inputs: reformed natural gas (steam + NG)
 - Outputs: H₂, retentate consisting of H₂O, CO, CO₂, CH₄,
 H₂, periodic regeneration of getter material releases SO₂.
 - Anticipated size: Targeting desired flux of H₂ size would currently be approximately 20x20x50 cm

Feed and Energy

- Energy input and output of a membrane module
 - Characteristics of primary feed:
 - LHV of natural gas = 930 Btu/ft³, or 34.6 MJ/m³
 - Reformed NG?
 - Energy Utilities with usage rate
 - Unknown
- Other inputs:
 - For membrane module, none.

Other Material Input and Output

- Other materials needed
 - Filter for particulates (part of reforming unit)
 - Purge gas (Air) for getter regeneration
 - Scrubber for sulfur gasses released from regenerated sulfur getter
- Other outputs:
 - Retentate will contain CO, CO₂, H₂O, H₂, CH₄.
 - Regeneration of getter will release SO₂.

Assessment of Status

- Uncertainties in the above information
 - All numbers are based on literature values for pressed pellets (~ 1-2 mm thick) of ceramic proton conductors. Until we make and test our first thin membranes (10-50 nm thick) all of these numbers are extremely speculative.
 - Operating temperature, flux, operating pressure, and cost estimates may all change significantly.
 Our first membrane will be tested early next year.

